
 20

Symbolic Pattern Matching
 and Rule-Based Programming Paradigm

Tošić, V., Dejan

Abstract—Present-day computer algebra

systems offer programming paradigms that can
solve many scientific and engineering problems
more efficiently, with less effort from the
programmer, than the classic programming styles,
such as procedural or object-oriented
programming. This contribution focuses on a real-
life engineering problem that is nicely solved by
using symbolic pattern matching and rule-based
programming. The benefits of the new approach
are highlighted and the entire code in Mathematica
is presented and explained. The symbolic
programming language is suggested for rapid
software development and algorithm prototyping
in the field of scientific research and engineering
practice.

Index Terms—computer algebra system,
Foster's theorem, Mathematica, symbolic pattern
matching, rule-based programming

1. INTRODUCTION
common approach taken in modern software
engineering is to combine various

programming paradigms, such as procedural
programming or object-oriented programming, to
achieve the desired goals. Since the appearance
of computer algebra systems (CAS),
programming has become a task of knowledge
accumulation that tells the computer what to
know, when to use information, and how to apply
the knowledge in solving problems.
Contemporary CAS integrated a suite of software
tools and programming concepts that are
particularly useful for engineers and physicists.
The leader in implementing CAS, Mathematica
by Wolfram Research, launched an original
programming language, which gives a different
perspective to software realization of scientific
and engineering algorithms [1,2,3].

2. MATHEMATICA PATTERN MATCHING
At the core of Mathematica are its highly

developed symbolic language and the
foundational idea that everything – data,
programs, mathematical formulas, lists, graphics,
and documents – can be represented as
symbolic expressions. The advanced notion of

expressions is a crucial unifying principle and it is
the fact that every object has the same
underlying structure.

Manuscript received March 30, 2007. This work was supported

in part by the Ministry of Science and Environmental Protection of
the Republic of Serbia under grant no. TR-6154.

D. V. Tošić is with the School of Electrical Engineering,
University of Belgrade, Serbia (e-mail: tosic@etf.bg.ac.yu).

Expressions are used to specify operations
and to maintain a structure, which can then be
acted on by the operations. A prototypical
example of an expression is f[x,y], where the
symbol f is the head of the expression, the
symbols x and y are the arguments, and the
square brackets are delimiters; the head and the
arguments itself can be expressions, as well. The
parentheses are used exclusively for grouping
following standard mathematical notation to
specify the precedence of operators. The use of
distinct delimiters for arguments is a unique
concept important for symbolic programming and
it adds a new level of flexibility to the very
concept of programming: the pattern matching
and transformation rules can be applied to both
expression heads and expression arguments.

Patterns are used to represent classes of
expressions with a given structure. The main
power of patterns comes from the fact that many
operations can be done not only with single
expressions, but also with patterns that represent
whole classes of expressions.

It might be useful to mention that (1) a pattern
will match a particular expression if the structure
of the pattern is the same as the structure of the
expression, (2) even though two expressions
may be mathematically equal, they cannot be
represented by the same pattern unless they
have the same structure.

The fact that patterns specify the structure of
expressions is crucial in making it possible to set
up transformation rules which change the
structure of expressions, while leaving them
mathematically equal [4,5,6].

3. APPLICATION TO ELECTRICAL ENGINEERING
Symbolic pattern matching and rule-based

programming (and the combining of various
programming paradigms) are actually explored in
the AI community for many years, but are not
widespread in the engineering community.
Therefore, the following example illustrates this
paradigm from the electrical engineering
viewpoint and demonstrates the uniqueness and
benefits of the symbolic language concept.

Consider an essential problem of electrical
network synthesis and practical filter design [7,8]:

 A

 21

given a transfer function, e.g.
sss

ssH
65
33

35

24

++

++
= ,

determine whether the function can be realized
as a driving-point impedance of an electrical
network of interconnected capacitors and
inductors.

According to the Foster's reactance theorem,
an algebraic rational function to be realizable as
the driving-point impedance of a lossless one-
port electrical network can always be expanded

as ∑
+

++= −

i ii

i

csb
sa

sa
s

aH 20
1 , where all

coefficients are positive. Mathematica code that
performs the required test, based on the Foster's

theorem, is given in Fig. 1. The code is concise,
elegant, readable, easy-to-maintain, and self-
explanatory.

The function Apart expands the transfer
function (H) into partial fractions and the function
List converts the expansion to a list of terms
(partialFractions). The function MatchQ
performs the desired pattern matching, term by
term, under the conditional rule that the
coefficients should be positive numbers; it returns
a list of logical constants (patternMatchTest).
The function And returns true if all terms pass the
pattern match, otherwise it returns false. The
intermediate results are shown in Fig. 2.

Figure 1: Mathematica code that performs the test based on the Foster's theorem.

Figure 2: Results of the test shown in Fig. 1.

4. CONCLUSION
Symbolic pattern matching and rule-based

programming paradigm is an important issue and
a choice of preference for rapid software
development and algorithm prototyping in the
fields of science and engineering. It is the key
programming paradigm involved in the
development and implementation of
SchematicSolver [9].

REFERENCES
[1] Tošić, D., Lutovac, M., “Advances in symbolic simulation

of systems,” The IPSI BgD Transactions on Advanced
Research, vol. 3, no. 1, 2007, pp. 9–14.

[2] Wolfram, S., The Mathematica Book. Cambridge, MA:
Cambridge University Press, Wolfram Media, 2003.

[3] Mathematica, http://www.wolfram.com/, Version 6.0.1
released June 19, 2007.

[4] Maeder, R., Computer Science with Mathematica. New
York, NY: Cambridge University Press, 2000.

[5] Bahder, T., Mathematica for Scientists and Engineers.
Reading, MA: Addison-Wesley, 1995.

[6] Blachman, N., Mathematica: A Practical Approach.
Englewood-Cliffs, NJ: Prentice Hall, 1992.

 22

[7] Chen, W-K. (Ed.), The Electrical Engineering
Handbook. Burlington, MA: Elsevier Academic Press,
2004.

[8] Lutovac, M. D., Tošić, D. V., Evans, B. L., Filter Design
for Signal Processing using MATLAB and Mathematica.
Upper Saddle River, NJ: Prentice Hall, 2001.

[9] Lutovac, M. D., Tošić, D. V., SchematicSolver,
http://www.wolfram.com/products/applications/schemati
csolver/, Version 2.1 for Mathematica 6 rel. July 12,
2007.

